# LESSON 5.1b

**Solving Equations Using n<sup>th</sup> Roots** 

#### Today you will:

- Understand when/why to only give the positive root as an answer (n<sup>th</sup> root, n is even).
- Solve equations involving n<sup>th</sup> roots.
- Practice using English to describe math processes and equations

# **Radical Form**



# The "Square Root" Symbol is special!



## Why in the textbook do they sometimes only show the positive answer when using $\sqrt{-2}$

- Yes, all positive numbers have two square roots: the positive and negative ones.
- We call the positive one the principle root.
- Unless otherwise stated  $\sqrt{}$  is defined to refer to the *principle square root*.
- Examples of when you will only give the principle root:
  - $\sqrt{4} = 2 \dots$  "what is the square **root** (singular) of 4?"
  - $f(x) = \sqrt{x}$  ... this is a function and must pass the vertical line test therefore must ignore negative answers.



- Examples of when you will give both the positive and negative answers:
  - $y = \sqrt{x}$  ... this is an *equation* not a function and we are looking for all possible answers.
  - When directly asked "what are the square/n<sup>th</sup> roots (plural) of something."

# Example of when to give both answers... • ...plural...multiple roots... Core Concept

Real nth Roots of a

Let *n* be an integer (n > 1) and let *a* be a real number.

#### *n* is an even integer.

#### *n* is an odd integer.

a < 0 One real *n*th root:  $\sqrt[n]{a} = a^{1/n}$ 

$$a = 0$$
 One real *n*th root:  $\sqrt[n]{0} = 0$ 

a > 0 One real *n*th root:  $\sqrt[n]{a} = a^{1/n}$ 

When *n* is even and a > 0, there are two real roots. The positive root is called the *principal root*.

r e RMS

a < 0 No real *n*th roots

a = 0 One real *n*th root:  $\sqrt[n]{0} = 0$ 

a > 0 Two real *n*th roots:  $\pm \sqrt[n]{a} = \pm a^{1/n}$ 

Find the indicated real *n*th root(s) of *a*.

**a.** n = 3, a = -216 **b.** n = 4, a = 81 **b.** n = 4, a = 81 **b.** n = 4, a = 81 **c.** n = 1, a = 1, a = 1 **c.** n = 1, a = 1, a = 1 **c.** n = 1, a = 1, a = 1 **c.** n = 1, a = 1, a = 1 **c.** n = 1, a = 1, a = 1 **c.** n = 1, a = 1, a = 1**c.**

### SOLUTION

- **a.** Because n = 3 is odd and a = -216 < 0, -216 has one real cube root.
  - Because  $(-6)^3 = -216$ , you can write  $\sqrt[3]{-216} = -6$  or  $(-216)^{1/3} = -6$ .
- **b.** Because n = 4 is even and a = 81 > 0, 81 has two real fourth roots. Because  $3^4 = 81$  and  $(-3)^4 = 81$ , you can write  $\pm \sqrt[4]{81} = \pm 3$  or  $\pm 81^{1/4} = \pm 3$ .



Find the real solution(s) of (a)  $4x^5 = 128$  and (b)  $(x - 3)^4 = 21$ .

## SOLUTION

**a.** 
$$4x^5 = 128$$
  
 $x^5 = 32$   
 $x = \sqrt[5]{32}$   
 $x = 2$ 

COMMON ERROR

When *n* is even and a > 0, be sure to consider both the positive and negative *n*th roots of *a*.

...we're solving an equation so looking for all possible answers! The solution is x = 2. **b.**  $(x - 3)^4 = 21$   $x - 3 = \pm \sqrt[4]{21}$   $x = 3 \pm \sqrt[4]{21}$   $x = 3 \pm \sqrt[4]{21}$  or  $x = 3 - \sqrt[4]{21}$  $x \approx 5.14$  or  $x \approx 0.86$  Write original equation. Divide each side by 4. Take fifth root of each side. Simplify.

Write original equation.

Take fourth root of each side.

Add 3 to each side.

Write solutions separately.

Use a calculator.

The solutions are  $x \approx 5.14$  and  $x \approx 0.86$ .

A hospital purchases an ultrasound machine for \$50,000. The hospital expects the useful life of the machine to be 10 years, at which time its value will have depreciated to \$8000. The hospital uses the declining balances method for depreciation, so the annual depreciation rate *r* (in decimal form) is given by the formula 8000,  $r = 1 - \left(\frac{S}{C}\right)^{1/n}$ .

50,000

## SOLUTION

The useful life is 10 years, so n = 10. The machine depreciates to \$8000, so S = 8000. The original cost is \$50,000, so C = 50,000. So, the annual depreciation rate is

$$r = 1 - \left(\frac{S}{C}\right)^{1/n} = 1 - \left(\frac{8000}{50,000}\right)^{1/10} = 1 - \left(\frac{4}{25}\right)^{1/10} \approx 0.167.$$





# Homework

Pg 241, #35-58